THE EFFECTIVENESS OF NATURAL LANGUAGE PROCESSING (NLP) AS A PROCESSING SOLUTION AND SEMANTIC IMPROVEMENT
DOI:
https://doi.org/10.53695/injects.v2i1.194Keywords:
Natural Language Processing, Semantic, Effectiveness.Abstract
The purpose of writing this article is to discuss the function of Natural Language Processing (NLP) in semantic improvement. The writing method uses literature related to NLP on semantic processing and refinement. The discussion in this paper shows that natural language processing helps computers communicate with humans in their own language and makes scaling other language-related tasks easier and more systematic. Because NLP includes lexical/scanner analysis, syntactic/parser analysis, semantic/translator analysis and pragmatic/evaluator analysis. Each component is a sequence of interrelated processes and requires a knowledge base to process a language. Lexical analysis requires knowledge of vocabulary (lexicon) to understand word formation. Syntax analysis requires knowledge of grammar rules (grammar) to understand the structure of a sentence. Semantic analysis requires knowledge of the meaning and meaning of words to understand the relationship between words and the meaning of a sentence. Pragmatic analysis requires knowledge of a concept to understand the relationship between language and the context in which it is used.References
Aditama, K. 2020. Pemanfaatan Natural Language Processing Dan Pattern Matching Dalam Pembelajaran Melalui Guru Virtual. Elkom: Jurnal Elektronika Dan Komputer, 13(1), 121–133. https://journal.stekom.ac.id/index.php/elkom/article/view/187
Admojo, F. T. 2018. Ontologi Bahasa Sebagai Basis Pengetahuan untuk Pemrosesan Bahasa Alami. 08(02).
Akhir, T. 2017. Implementasi Natural Language Processing Untuk Mengurangi Risiko Terabaikannya Calon Pelanggan Pada Pt . Shafira Tour & Travel.
Andayu, N. P. 2013. Perancangan Text To Speech Converter Engine Dalam Pengucapan Kata Berbahasa Arab Sehari-Hari. Jurnal Sistem Dan Teknologi Informasi (JustIN), 1(3), 144–149.
Industri, F. T. 2001. Studi Analisis Metode-Metode Parsing Dan Interpretasi Semantik Pada Natural Language Processing. Jurnal Informatika, 2(1), 13-22–22. https://doi.org/10.9744/informatika.2.1.pp.13-22
Juli, E. (2020). Natural languange processing.
Maghfira, T., Cholissodin, I., & Widodo, A. 2017. Deteksi Kesalahan Ejaan dan Penentuan Rekomendasi Koreksi Kata yang Tepat Pada Dokumen Jurnal JTIIK Menggunakan Dictionary Lookup dan Damerau-Levenshtein Distance. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(6), 498–506.
Putri, W. T. H., & Hendrowati, R. 2018. Penggalian Teks Dengan Model Bag of Words Terhadap Data Twitter. Jurnal Muara Sains, Teknologi, Kedokteran, Dan Ilmu Kesehatan, 2(1), 129–138.
Restina, D. J., Bijaksana, M. A., & Lhaksmana, K. M. 2019. Pembangunan Synonym Set untuk WordNet Bahasa Indonesia dengan Menggunakan Metode Komutatif. Ind. Journal on Computing, 4(2), 147–156. https://doi.org/10.21108/indojc.2019.4.2.334
Wangsanegara, N. K., & Subaeki, B. 2015. IMPLEMENTASI NATURAL LANGUAGE PROCESSING DALAM PENGUKURAN KETEPATAN EJAAN YANG DISEMPURNAKAN ( EYD ) PADA ABSTRAK SKRIPSI MENGGUNAKAN ALGORITMA FUZZY LOGIC Jurusan Teknik Informatika , Fakultas Sains dan Teknologi UIN Sunan Gunung Djati Bandung Ejaan yang. 8(2).
Xxxix, P. (2017). PIBSI XXXIX, Semarang 7-8 November 2017. November, 286–302.
Yazid, A. S., & Fatwanto, A. 2018. Penentuan Kelas Kata Pada Part of Speech Tagging Kata Ambigu Bahasa Indonesia. JISKA (Jurnal Informatika Sunan Kalijaga), 2(3), 157. https://doi.org/10.14421/jiska.2018.23-05